Friday, October 8, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000281992800031
*Order Full Text [ ]

Title:
Enhancement of hydrogen gas permeability in electrically aligned MWCNT-PMMA composite membranes

Authors:
Kumar, S; Sharma, A; Tripathi, B; Srivastava, S; Agrawal, S; Singh, M; Awasthi, K; Vijay, YK

Author Full Names:
Kumar, Sumit; Sharma, Anshu; Tripathi, Balram; Srivastava, Subodh; Agrawal, Shweta; Singh, M.; Awasthi, Kamlendra; Vijay, Y. K.

Source:
MICRON 41 (7): 909-914 OCT 2010

Language:
English

Document Type:
Review

Author Keywords:
MWCNT; PM MA; Membrane; Electrical field alignment; Gas permeation; Raman spectroscopy; XRD

KeyWords Plus:
WALL CARBON NANOTUBES; FAST MASS-TRANSPORT; SEPARATION MEMBRANES; POLYMER COMPOSITES; FIELD; PERMEATION; STORAGE; ADSORPTION

Abstract:
The multi-walled carbon nanotube (MWCNT) dispersed polymethylmethacrylate (PMMA) composite membranes have been prepared for hydrogen gas permeation application. Composite membranes are characterized by Raman spectroscopy, optical microscopy, X-ray diffraction, electrical measurements and gas permeability measurements. The effect of electric field alignment of MWCNT in PMMA matrix on gas permeation has been studied for hydrogen gas. The permeability measurements indicated that the electrically aligned MWCNT in PMMA has shown almost 2 times higher permeability for hydrogen gas as compare to randomly dispersed MWCNT in PMMA. The enhancement in permeability is explained on the basis of well aligned easy channel provided by MWCNT in electrically aligned sample. The effect of thickness of membrane on the gas permeability also studied and thickness of about 30 mu m found to be optimum thickness for fast hydrogen gas permeates. (C) 2010 Elsevier Ltd. All rights reserved.

Reprint Address:
Kumar, S, Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India.

Research Institution addresses:
[Kumar, Sumit; Sharma, Anshu; Tripathi, Balram; Srivastava, Subodh; Agrawal, Shweta; Singh, M.; Vijay, Y. K.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India; [Awasthi, Kamlendra] Indian Inst Technol, Dept Chem Engn, DST Unit Nanosci, Kanpur 208016, Uttar Pradesh, India

E-mail Address:
sumitphy11@gmail.com; yk_vijay@sancharnet.in

Cited References:
ACHARYA NK, 2008, INT J HYDROGEN ENERG, V33, P327, DOI 10.1016/j.ijhydene.2007.07.030.
ACKERMAN DM, 2003, MOL SIMULAT, V29, P677, DOI 10.1080/0892702031000103239.
AJAYAN PM, 1999, CHEM REV, V99, P1787.
ANSON A, 2004, CARBON, V42, P1243, DOI 10.1016/j.carbon.2004.01.038.
BAKER RW, 1991, MEMBRANE SEPARATION.
BAO QL, 2006, NANOTECHNOLOGY, V17, P1016, DOI 10.1088/0957-4484/17/4/028.
BLIZNYUK VN, 2006, POLYMER, V47, P3915, DOI 10.1016/j.polymer.2006.03.072.
CHENG HM, 2001, CARBON, V39, P1447.
DILLON AC, 1997, NATURE, V386, P377.
EKLUND PC, 1995, CARBON, V33, P959.
FERON P, 1992, IEA GREENHOUSE GAS R.
FREEMAN BD, 1999, MACROMOLECULES, V32, P375.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KATAURA H, 1999, SYNTHETIC MET, V103, P2555.
KIMURA T, 2002, ADV MATER, V14, P1380.
KOROS WJ, 2000, J MEMBRANE SCI, V175, P181.
KOROS WJ, 2002, MACROMOL SYMP, V188, P13.
KULSHRESTHA V, 2006, INT J HYDROGEN ENERG, V31, P1266, DOI 10.1016/j.ijhydene.2005.1.2.004.
KULSHRESTHA V, 2006, POLYM BULL, V56, P427, DOI 10.1007/s00289-006-0509-3.
KULSHRESTHA V, 2007, INT J HYDROGEN ENERG, V32, P3105, DOI 10.1016/j.ijhydene.2007.01.014.
KULSHRESTHA V, 2010, MICRON, V41, P390, DOI 10.1016/j.micron.2009.12.003.
LEE SM, 2001, J AM CHEM SOC, V123, P5059, DOI 10.1021/ja003751+.
LIJIMA S, 1991, NATURE, V354, P56.
MARTIN CA, 2005, POLYMER, V46, P877, DOI 10.1016/j.polymer.2004.11.081.
PAN W, 2009, J MATER SCI TECHNOL, V25, P247.
PARK C, 2006, J POLYM SCI POL PHYS, V44, P1751, DOI 10.1002/polb.20823.
PAUL DR, 1994, POLYM GAS SEPARATION.
SHARMA A, 2009, INT J HYDROGEN ENERG, V34, P3977, DOI 10.1016/j.ijhydene.2009.02.068.
SHEN K, 2004, CARBON, V42, P2315, DOI 10.1016/j.carbon.2004.005.014.
SIDOROV AN, 2008, NANOTECHNOLOGY, V19, UNSP 195708-195714.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
STEPHAN C, 2000, SYNTHETIC MET, V108, P139.
STERN SA, 1994, J MEMBRANE SCI, V94, P1.
SUER MG, 1994, J MEMBRANE SCI, V91, P77.
VERWEIJ H, 2007, SMALL, V3, P1996, DOI 10.1002/smll.200700368.
VIJAY YK, 2006, J POLYM RES, V13, P357, DOI 10.1007/s10965-006-9051-0.

Cited Reference Count:
38

Times Cited:
0

Publisher:
PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Subject Category:
Microscopy

ISSN:
0968-4328

DOI:
10.1016/j.micron.2010.05.016

IDS Number:
652GX

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000282018100001
*Order Full Text [ ]

Title:
Water Diffusion Behaviors and Transportation Properties in Transmembrane Cyclic Hexa-, Octa- and Decapeptide Nanotubes

Authors:
Liu, JA; Fan, JF; Tang, M; Cen, M; Yan, JF; Liu, Z; Zhou, WG

Author Full Names:
Liu, Jian; Fan, Jianfen; Tang, Min; Cen, Min; Yan, Jianfeng; Liu, Zhao; Zhou, Weigun

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (38): 12183-12192 SEP 30 2010

Language:
English

Document Type:
Article

KeyWords Plus:
ASSEMBLING PEPTIDE NANOTUBES; MOLECULAR-DYNAMICS; CARBON NANOTUBES; LIPID-BILAYER; LIQUID WATER; CHANNELS; PERMEATION; ION; MEMBRANES; MODEL

Abstract:
Molecular dynamics simulations have been performed on three transmembrane cyclic peptide nanotubes, i.e., 8 x (W (L) under barL)(n=345)/POPE (with uniform lengths but various radii) to investigate the radial dependences of the water-chain structures, diffusions, and transportation properties. The diffusions of individual water molecules and collective coordinates of all the channel-water in the three systems are certified as unbiased Brownian motions. From the very good linear relationships between MSDs and time intervals, the diffusion coefficients and transportation permeabilities have been deduced efficiently. Under the hydrostatic pressure differences across the membrane, a net unidirectional water flow rose up, and the osmotic permeabilities were determined. The ratios of the osmotic and diffusion permeabilities (p(f)/p(d)) were examined for all the three channels.

Reprint Address:
Fan, JF, Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Peoples R China.

Research Institution addresses:
[Liu, Jian; Fan, Jianfen; Tang, Min; Cen, Min; Zhou, Weigun] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Peoples R China; [Yan, Jianfeng; Liu, Zhao] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China

E-mail Address:
jffan1305@163.com

Cited References:
AGRE P, 2004, ANGEW CHEM INT EDIT, V43, P4278, DOI 10.1002/anie.200460804.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503.
BROOKS BR, 1983, J COMPUT CHEM, V4, P187.
CARVAJALDIAZ JA, 2009, J COMPUT THEOR NANOS, V6, P894, DOI 10.1166/jctn.2009.1123.
CHIU SW, 1989, BIOPHYS J, V56, P253.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DEGROOT BL, 2002, BIOPHYS J, V82, P2934.
DELEMOTTE L, 2008, J PHYS CHEM B, V112, P5547, DOI 10.1021/jp710846y.
EINSTEIN A, 1905, ANN PHYS-BERLIN, V17, P549.
ENGELS M, 1995, J AM CHEM SOC, V117, P9151.
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002.
FINKELSTEIN A, 1987, WATER MOVEMENT LIPID.
GHADIRI MR, 1993, NATURE, V366, P324.
GHADIRI MR, 1994, NATURE, V369, P301.
GOLDSMITH J, 2009, PHYS CHEM CHEM PHYS, V11, P528, DOI 10.1039/b807823h.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801.
GULLINGSRUD J, 2004, BIOPHYS J, V86, P3496, DOI 10.1529/biophysj.103.034322.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
HWANG H, 2006, J PHYS CHEM B, V110, P26448, DOI 10.1021/jp0657888.
HWANG H, 2006, J PHYS CHEM B, V110, P6999, DOI 10.1021/jp055740e.
HWANG H, 2009, J PHYS CHEM A, V113, P4780, DOI 10.1021/jp8080657.
JENSEN MO, 2003, BIOPHYS J, V85, P2884.
JENSEN MO, 2006, BIOPHYS J, V90, P2270, DOI 10.1529/biophysj.105.073965.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KHALFA A, 2009, CHEM PHYS, V358, P161, DOI 10.1016/j.chemphys.2009.01.012.
KHALILIARAGHI F, 2009, CURR OPIN STRUC BIOL, V19, P128, DOI 10.1016/j.sbi.2009.02.011.
KIM HS, 1998, J AM CHEM SOC, V120, P4417.
LEWIS JP, 1997, J PHYS CHEM B, V101, P10576.
LIU J, J PHYS CHEM LE UNPUB.
LIU J, 2010, J PHYS CHEM A, V114, P2376, DOI 10.1021/jp910624z.
MAHONEY MW, 2001, J CHEM PHYS, V114, P363.
MARTYNA GJ, 1994, J CHEM PHYS, V101, P4177.
OKAMOTO H, 2003, J AM CHEM SOC, V125, P2756, DOI 10.1021/ja0212720.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289.
PORTELLA G, 2007, BIOPHYS J, V92, P3930, DOI 10.1529/biophysj.106.102921.
PORTELLA G, 2009, BIOPHYS J, V96, P925, DOI 10.1016/j.bpj.2008.09.059.
SANCHEZOUESADA J, 2002, J AM CHEM SOC, V124, P10004, DOI 10.1021/ja025983+.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUI HX, 2001, NATURE, V414, P872.
SUTERA SP, 1993, ANNU REV FLUID MECH, V25, P1.
TAREK M, 2003, BIOPHYS J, V85, P2287.
TITOV AV, 2010, J PHYS CHEM B, V114, P1174, DOI 10.1021/jp9103933.
WALZ T, 1994, J BIOL CHEM, V269, P1583.
ZEIDEL ML, 1992, BIOCHEMISTRY-US, V31, P7436.
ZHU FQ, 2001, FEBS LETT, V504, P212.
ZHU FQ, 2002, BIOPHYS J, V83, P154.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZHU FQ, 2004, BIOPHYS J 1, V86, P50.
ZHU FQ, 2004, PHYS REV LETT, V93, ARTN 224501.
ZHU JC, 2008, J COMPUT AID MOL DES, V22, P773, DOI 10.1007/s10822-008-9212-9.

Cited Reference Count:
54

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp1039207

IDS Number:
652OV

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000281857100119
*Order Full Text [ ]

Title:
Desalination-of water by vapor-phase transport through hydrophobic nanopores

Authors:
Lee, J; Karnik, R

Author Full Names:
Lee, Jongho; Karnik, Rohit

Source:
JOURNAL OF APPLIED PHYSICS 108 (4): Art. No. 044315 AUG 15 2010

Language:
English

Document Type:
Article

KeyWords Plus:
REVERSE-OSMOSIS MEMBRANES; CONDENSATION COEFFICIENT; EVAPORATION COEFFICIENT; CARBON NANOTUBE; SEAWATER DESALINATION; FUEL-CELLS; DISTILLATION; REDUCTION; SURFACE; MACROMOLECULES

Abstract:
We propose a new approach to desalination of water whereby a pressure difference across a vapor-trapping nanopore induces selective transport of water by isothermal evaporation and condensation across the pore. Transport of water through a nanopore with saline water on one side and pure water on the other side under a pressure difference was theoretically analyzed under the rarefied gas assumption using a probabilistic framework that accounts for diffuse scattering from the pore walls as well as reflection from the menisci. The analysis revealed that in addition to salinity, temperature, and pressure difference, the nanopore aspect ratio and the probability of condensation of a water molecule incident on a meniscus from the vapor phase, known as the condensation coefficient, are key determinants of flux. The effect of condensation coefficient on mass flux becomes critical when the aspect ratio is small. However, the mass flux becomes independent of the condensation coefficien
t as the pore aspect ratio increases, converging to the Knudsen flux for long nanopores. For design of a nanopore membrane that can trap vapor, a minimum aspect ratio is derived for which coalescence of the two interfaces on either side of the nanopore remains energetically unfavorable. Based on this design criterion, the analysis suggests that mass flux in the range of 20-70 g/m(2) s may be feasible if the system is operated at temperatures in the range of 30-50 degrees C. The proposed approach further decouples transport properties from material properties of the membrane, which opens the possibility of engineering membranes with appropriate materials that may lead to reverse osmosis membranes with improved flux, better selectivity, and high chlorine resistance. (C) 2010 American Institute of Physics. [doi:10.1063/1.3419751]

Reprint Address:
Karnik, R, MIT, Dept Mech Engn, Cambridge, MA 02139 USA.

Research Institution addresses:
[Lee, Jongho; Karnik, Rohit] MIT, Dept Mech Engn, Cambridge, MA 02139 USA

E-mail Address:
karnik@mit.edu

Cited References:
ALTY T, 1931, P R SOC LOND A-CONTA, V131, P554.
ALTY T, 1935, PROC R SOC LON SER-A, V149, P104.
ANISIMOV SI, 1999, J CHEM PHYS, V110, P8722.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
BERMAN AS, 1965, J APPL PHYS, V36, P3356.
BONACCI JC, 1976, CHEM ENG SCI, V31, P609.
CADOTTE J, 1981, 4277344, US.
CAILLIEZ F, 2008, J PHYS CHEM C, V112, P10435, DOI 10.1021/jp710746b.
CARDEW PT, 1999, MEMBRANE PROCESSES.
CINCOTTA RP, 2003, SECURITY DEMOGRAPHIC.
CLAUSING P, 1971, J VAC SCI TECHNOL, V8, P636.
CUNNINGHAM RE, 1980, DIFFUSION GASES PORO.
EAMES IW, 1997, INT J HEAT MASS TRAN, V40, P2963.
ENGEHIMN R, 2000, PEOPLE BALANCE POPUL.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
FRITZMANN C, 2007, DESALINATION, V216, P1, DOI 10.1016/i.desal.2006.12.009.
GIAYA A, 2002, J CHEM PHYS, V117, P3464.
GLATER J, 1994, DESALINATION, V95, P325.
GREGG SJ, 1967, ADSORPTION SURFACE A.
HALL C, 1981, POLYM MAT INTRO TECH.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JEONG BH, 2007, J MEMBRANE SCI, V294, P1, DOI 10.1016/j.memsci.2007.02.025.
KHAYET M, 2003, J APPL POLYM SCI, V89, P2902, DOI 10.1002/app.12231.
KIM HI, 2001, J MEMBRANE SCI, V190, P21.
KLAUK H, 2007, NATURE, V445, P745, DOI 10.1038/nature05533.
KULKARNI A, 1996, J MEMBRANE SCI, V114, P39.
LAWSON KW, 1996, J MEMBRANE SCI, V120, P123.
LAWSON KW, 1997, J MEMBRANE SCI, V124, P1.
LEFEVRE B, 2004, J CHEM PHYS, V120, P4927, DOI 10.1063/1.1643728.
LIU C, 2000, COMMUN THEOR PHYS, V33, P457.
LIU ZL, 2002, LANGMUIR, V18, P4054.
LOEB S, 1964, 3133132, US.
LUM K, 1997, PHYS REV E, V56, R6283.
MAA JR, 1967, IND ENG CHEM FUND, V6, P504.
MAGARA Y, 1998, DESALINATION, V118, P25.
MAREK R, 2001, INT J HEAT MASS TRAN, V44, P39.
MASON EA, 1983, GAS TRANSPORT POROUS.
MCCOOL BA, 2003, J MEMBRANE SCI, V218, P55, DOI 10.1016/S0376-7388(03)00136-4.
MICKOLS WE, 2005, INT DES ASS WORLD C.
MILLER JE, 2003, SAND20030800 SAND NA.
MILLS AF, 1967, INT J HEAT MASS TRAN, V10, P1815.
MILLS AF, 1998, HEAT TRANSFER.
NABAVIAN K, 1963, CHEM ENG SCI, V18, P651.
PARKHILL AL, 2006, INT IMMUNOPHARMACOL, V6, P1013, DOI 10.1016/j.intimp.2006.01.012.
PETERSEN RJ, 1993, J MEMBRANE SCI, V83, P81.
PHILLIP WA, 2006, J MEMBRANE SCI, V286, P144, DOI 10.1016/j.memsci.2006.09.028.
RAMACHANDRAN CE, 2006, MICROPOR MESOPOR MAT, V90, P293, DOI 10.1016/j.micromeso.2005.10.021.
RAO AP, 2003, J MEMBRANE SCI, V211, P13.
SANDLER SI, 2006, CHEM BIOCH ENG THERM.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SOLTANIEH M, 1981, CHEM ENG COMMUN, V12, P279.
SRISURICHAN S, 2006, J MEMBRANE SCI, V277, P186, DOI 10.1016/j.memsci.2005.10.028.
STELZER J, 1998, MICROPOR MESOPOR MAT, V22, P1.
STRIEMER CC, 2007, NATURE, V445, P749, DOI 10.1038/nature05532.
TANIGUCHI M, 2000, AICHE J, V46, P1967.
TANIGUCHI M, 2001, J MEMBRANE SCI, V183, P259.
VARANASI KK, 2009, APPL PHYS LETT, V95, ARTN 094101.
WANG C, 2004, NANO LETT, V4, P345, DOI 10.1021/nl034952p.
WILF M, 2007, GUIDEBOOK MEMBRANE D.
WOLF PH, 2004, P INT C DES COST LIM, P55.
WYLLIE G, 1949, P ROY SOC LOND A MAT, V197, P383.
YAMAGUCHI A, 2004, NAT MATER, V3, P337, DOI 10.1038/nmat1107.
YUAN ZH, 2002, ADV MATER, V14, P303.

Cited Reference Count:
64

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Applied

ISSN:
0021-8979

DOI:
10.1063/1.3419751

IDS Number:
650NV

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000282083700003
*Order Full Text [ ]

Title:
Stabilities and Electronic Properties of Ice Nanotube Encapsulated in Single-wall Carbon Nanotube

Authors:
Yang, BH; Zhang, AH; Li, L

Author Full Names:
Yang Baohua; Zhang Aihua; Li Lin

Source:
CHINESE JOURNAL OF CHEMISTRY 28 (7): 1076-1080 JUL 2010

Language:
English

Document Type:
Article

Author Keywords:
carbon nanotube; ice nanotube; self-consistent-field crystal orbital method; stability; electronic structure

KeyWords Plus:
WATER

Abstract:
The one-dimensional n-gon ice nanotube and its hybrid structure n-gon@(m,n) are investigated using ab initio self-consistent-field crystal orbital method based on density functional theory. The study focused on the stabilities and electronic properties of ice tube and n-gon@(m,n) complex. The results show that the pentagon and hexagon ice tubes are most stable and all the tubes are semiconductor with the band gap of -6 eV for the isolated ice nanotube. For the complex n-gon@(m,n), the interwall spacing between the carbon nanotube and ice tube plays an important role in the stabilities of resultant structures. The most stable complex has optimum interwall spacing which is close to the van der Waals distance. The frontier energy bands of n-gon@(m,n) complex are mainly derived from carbon nanotube and encapsulation of ice tube can not modulate the electronic properties of CNT.

Reprint Address:
Yang, BH, Capital Med Univ, Yanjing Med Coll, Beijing 101300, Peoples R China.

Research Institution addresses:
[Yang Baohua; Zhang Aihua; Li Lin] Capital Med Univ, Yanjing Med Coll, Beijing 101300, Peoples R China

E-mail Address:
y_b_h_@sohu.com

Cited References:
BAI J, 2003, J CHEM PHYS, V118, P3913, DOI 10.1063/1.1555091.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
HAMANN DR, 1997, PHYS REV B, V66, P10157.
HUMMER G, 2001, NATURE, V414, P188.
KOGA K, 2000, J CHEM PHYS, V113, P5037.
KOGA K, 2001, NATURE, V412, P802.
KOGA K, 2002, PHYSICA A, V314, P462.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
LU J, 2003, PHYS REV B, V68, UNSP 115401.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MONTHIOUX M, 2002, CARBON, V40, P1809.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
PERDEW JP, 1996, PHYS REV LETT, V77, P3865.
ROCHEFORT A, 2003, PHYS REV B, V67, ARTN 115401.
SAUNDERS VR, 2003, CRYSTAL2003 USERS MA.
SHIOMI J, 2007, J PHYS CHEM C, V111, P12188, DOI 10.1021/jp071508s.

Cited Reference Count:
18

Times Cited:
0

Publisher:
WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY

Subject Category:
Chemistry, Multidisciplinary

ISSN:
1001-604X

DOI:
10.1002/cjoc.201090188

IDS Number:
653IV

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: