Friday, October 15, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000282244200001
*Order Full Text [ ]

Title:
Microfluidic Transport and Micro-scale Flow Physics: An Overview

Authors:
Chakraborty, D; Chakraborty, S

Author Full Names:
Chakraborty, Debapriya; Chakraborty, Suman

Source:
MICROFLUIDICS AND MICROFABRICATION : 1-85 2010

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
Interfacial slip; slip length; Kundsen number; Reynolds number; capillary number; Bond number; continuum hypothesis; hydrophobic; interaction; nanobubble; friction factor; continuity equation; momentum; equation; Stokes hypothesis Navier Stokes equation; laminar flow; fully; developed flow; surface tension driven flow; contact angle; Young Laplace; equation; capillary filling; Marangoni effect; electrocapillary; continuous; electrowetting electrowetting on dielectric (EWOD); Young Lippman equation; optofluidics; rotational microfluidics (lab on a CD); electrokinetics; electrical; double layer (EDL); electroosmosis; streaming current; streaming potential; Poisson equation Poisson Boltzmann equation; steric effect; AC electroosmosis; electrophoresis; dielectrophoresis; electrothermal effect; electro-magnetohydrodynamics (EMHD); acoustic streaming; droplet based microfluidics

KeyWords Plus:
ELECTRIC DOUBLE-LAYER; HEAT-TRANSFER; LIQUID FLOW; ELECTROLYTE-SOLUTION; DRIVEN FLOW; FLUID-FLOW; MICROCHANNELS; WATER; DROPLET; WALL

Abstract:
In this article, we delineate some of the distinctive and demarcating fundamental aspects of microscale fluid flows as compared to their macroscale counterparts, and illustrate the utilization of these principles towards exploiting new functionalities in devices and systems of emerging importance. In particular, we emphasize on some of the important flow actuation mechanisms (pressure-driven, surface tension-driven, centrifugal, electrokinetic, magnetohydrodynamic, optical, and acoustic) in microfluidics and their implications, and outline the fundamental physical and mathematical principles that govern their implementations in practice.

Reprint Address:
Chakraborty, S, Indian Inst Technol, Dept Mech Engn, Kharagpur 721302, W Bengal, India.

Research Institution addresses:
[Chakraborty, Debapriya; Chakraborty, Suman] Indian Inst Technol, Dept Mech Engn, Kharagpur 721302, W Bengal, India

E-mail Address:
debapriya.chakraborty@gmail.com; suman@mech.iitkgp.ernet.in

Cited References:
BATCHELOR GK, 2000, INTRO FLUID DYNAMICS.
BHUIYAN LB, 2005, J CHEM PHYS, V123, UNSP 034704-5.
BRENNER H, 2005, PHYSICA A, V349, P60, DOI 10.1016/j.physa.2004.10.034.
BRENNER H, 2005, PHYSICA A, V355, P251, DOI 10.1016/j.physa.2005.03.020.
BRENNER H, 2006, PHYSICA A, V370, P190, DOI 10.1016/j.physa.2006.03.066.
BRUNET E, 2007, PHYS REV E, V76, UNSP 056306.
CHAKRABORTY D, 2009, J APPL PHYS, V105, UNSP 084904-084910.
CHAKRABORTY S, 2006, J PHYS D APPL PHYS, V39, P5364, DOI 10.1088/0022-3727/39/24/038.
CHAKRABORTY S, 2007, APPL PHYS LETT, V90, UNSP 034108-3.
CHAKRABORTY S, 2007, J APPL PHYS, V102, UNSP 104907-104911.
CHAKRABORTY S, 2007, PHYS FLUIDS, V19, ARTN 088104.
CHAKRABORTY S, 2007, PHYS REV LETT, V99, ARTN 094504.
CHAKRABORTY S, 2008, PHYS FLUIDS, V20, UNSP 043602-9.
CHAKRABORTY S, 2008, PHYS REV E 2, V77, ARTN 037303.
CHUN MS, 2005, J MICROMECH MICROENG, V15, P710, DOI 10.1088/0960-1317/15/4/007.
COX RG, 1986, J FLUID MECH, V168, P169.
DUCREE J, 2007, J MICROMECH MICROENG, V17, S103, DOI 10.1088/0960-1317/17/7/S07.
DUTTA P, 2001, ANAL CHEM, V73, P5097.
FOX RW, 2000, INTRO FLUID MECH.
GREEN NG, 2000, J PHYS D APPL PHYS, V33, L13.
HOFFMAN RL, 1975, J COLLOID INTERF SCI, V50, P228.
HUANG W, 2001, J BIOMECH ENG-T ASME, V123, P446.
HUMMER G, 2001, NATURE, V414, P188.
HUNTER RJ, 1981, ZETA POTENTIAL COLLO.
ISRAELACHVILI JN, 1992, INTERMOLECULAR SURFA.
JANG JS, 2000, SENSOR ACTUAT A-PHYS, V80, P84.
JIRAGE KB, 1997, SCIENCE, V278, P655.
KALLIADASIS S, 1994, PHYS FLUIDS, V6, P12.
KARNIADAKIS GE, 2005, MICROFLOWS FUNDAMENT.
KENNARD EH, 1938, KINETIC THEORY GASES.
KILIC MS, 2007, PHYS REV E 1, V75, ARTN 021503.
KLEINSTREUER C, 2004, J FLUID ENG-T ASME, V126, P1, DOI 10.1115/1.1637633.
KNECHT V, 2008, J COLLOID INTERF SCI, V318, P477, DOI 10.1016/j.jcis.2007.10.035.
LEVINE S, 1975, J COLLOID INTERF SCI, V52, P136.
LEVINE S, 1978, J CHEM SOC F2, V74, P1670.
LEW HS, 1970, J BIOMECH, V3, P23.
LI D, 2004, ELECTROKINETICS MICR.
LI D, 2008, ENCY MICROFLUIDICS N.
LI DQ, 2001, COLLOID SURFACE A, V195, P35.
LI LJ, 2004, J MICROMECH MICROENG, V14, P1734, DOI 10.1088/0960-1317/14/12/019.
LIGHTHILL J, 1978, WAVES FLUIDS.
LINK DR, 2004, PHYS REV LETT, V92, ARTN 054503.
LIU GL, 2006, NAT MATER, V5, P27, DOI 10.1038/nmat1528.
MADOU M, 2006, ANNU REV BIOMED ENG, V8, P601, DOI 10.1146/annurev.bioeng.8.061505.095758.
MAJUMDER M, 2005, NATURE, V438, P4.
MALA GM, 1999, INT J HEAT FLUID FL, V20, P142.
MAXWELL JC, 1879, PHILOS T R SOC LONDO, V170, P231, DOI 10.1098/RSTL.1879.0067.
MAZOUCHI A, 2000, PHYS FLUIDS, V12, P542.
MOORTHY J, 2002, J SENSORS ACTUATOR A, V75, P223.
NADLER B, 2004, J PHYS-CONDENS MAT, V16, S2153, DOI 10.1088/0953-8984/16/22/015.
OUTHWAITE CW, 1980, J CHEM SOC FARAD T 2, V76, P1388.
PEIYI W, 1983, CRYOGENICS, V23, P273.
PENG XF, 1996, INT J HEAT MASS TRAN, V39, P2599.
POHL HA, 1978, DIELECTROPHORESIS BE.
PROBSTEIN RF, 2003, PHYSICOCHEMICAL HYDR.
QU WL, 2000, INT J HEAT MASS TRAN, V43, P353.
RAJARAMAN S, 2006, SENSOR ACTUAT B-CHEM, V114, P392, DOI 10.1016/j.snb.2005.06.022.
RAMOS A, 1998, J PHYS D APPL PHYS, V31, P2338.
REN CL, 2004, J COLLOID INTERF SCI, V274, P319, DOI 10.1016/j.jcis.2003.10.036.
RILEY N, 2001, ANNU REV FLUID MECH, V33, P43.
ROSENGARTEN G, 2005, ANZIAM J, V46, C304.
SCHLEIZER AD, 1999, J FLUID MECH, V383, P29.
SCHLICHTING H, 2003, BOUNDARY LAYER THEOR.
SCHUSS Z, 2001, PHYS REV E 2, V64, ARTN 036116.
SINTON D, 2004, EXP FLUIDS, V37, P872, DOI 10.1007/s00348-004-0875-2.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
STEINBERGER A, 2007, NAT MATER, V6, P665, DOI 10.1038/nmat1962.
STRATTON JA, 1941, ELECTROMAGNETIC THEO.
TANG ZX, 1992, J CHEM PHYS, V96, P4639.
TANG ZX, 1992, J CHEM PHYS, V97, P494.
TANG ZX, 1994, J CHEM PHYS, V100, P4527.
THOMPSON PA, 1997, NATURE, V389, P360.
VAINSHTEIN P, 2002, J MICROMECH MICROENG, V12, P252.
VANDERHEYDEN FHJ, 2005, PHYS REV LETT, V95, ARTN 116104.
VANDERHEYDEN FHJ, 2005, PHYS REV LETT, V95, ARTN 116104.
WANG BX, 1994, INT J HEAT MASS TRAN, V37, P73.
WHITE FM, 2005, VISCOUS FLUID FLOW.
WHITESIDES GM, 2006, NATURE, V442, P368, DOI 10.1038/nature05058.
WU P, 1984, CRYOGENICS, V24, P415.
YANG C, 1997, J COLLOID INTERF SCI, V194, P95.
YANG CY, 1996, INT J HEAT MASS TRAN, V39, P791.
YIH CS, 1995, J FLUID MECH, V297, P29.
ZHANG LR, 1993, J CHEM PHYS, V98, P5793.
ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102.

Cited Reference Count:
85

Times Cited:
0

Publisher:
SPRINGER; 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES

DOI:
10.1007/978-1-4419-1543-6_1

IDS Number:
BRA46

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000282197500009
*Order Full Text [ ]

Title:
Synthetic Chloride-Selective Carbon Nanotubes Examined by Using Molecular and Stochastic Dynamics

Authors:
Hilder, TA; Gordon, D; Chung, SH

Author Full Names:
Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho

Source:
BIOPHYSICAL JOURNAL 99 (6): 1734-1742 SEP 22 2010

Language:
English

Document Type:
Article

KeyWords Plus:
BORON-NITRIDE NANOTUBES; BROWNIAN DYNAMICS; WATER TRANSPORT; FORCE-FIELDS; CHANNELS; SIMULATIONS; PERMEATION; CHEMISTRY; MEMBRANE; SEPARATION

Abstract:
Synthetic channels, such as nanotubes, offer the possibility of ion-selective nanoscale pores which can broadly mimic the functions of various biological ion channels, and may one day be used as antimicrobial agents, or for treatment of cystic fibrosis. We have designed a carbon nanotube that is selectively permeable to anions. The virtual nanotubes are constructed from a hexagonal array of carbon atoms (graphene) rolled up to form a tubular structure, with an effective radius of 4.53 angstrom and length of 34 angstrom. The pore ends are terminated with polar carbonyl groups. The nanotube thus formed is embedded in a lipid bilayer and a reservoir containing ionic solutions is added at each end of the pore. The conductance properties of these synthetic channels are then examined with molecular and stochastic dynamics simulations. Profiles of the potential of mean force at 0 mM reveal that a cation moving across the pore encounters an insurmountable free energy barrier of simil
ar to 25 kT in height. In contrast, for anions, there are two energy wells of similar to 12 kT near each end of the tube, separated by a central free energy barrier of 4 kT. The conductance of the pore, with symmetrical 500 mM solutions in the reservoirs, is 72 pS at 100 mV. The current saturates with an increasing ionic concentration, obeying a Michaelis-Menten relationship. The pore is normally occupied by two ions, and the rate-limiting step in conduction is the time taken for the resident ion near the exit gate to move out of the energy well.

Reprint Address:
Hilder, TA, Australian Natl Univ, Res Sch Biol, Canberra, ACT, Australia.

Research Institution addresses:
[Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho] Australian Natl Univ, Res Sch Biol, Canberra, ACT, Australia

E-mail Address:
tamsyn.hilder@anu.edu.au

Cited References:
AGRE P, 2004, ANGEW CHEM INT EDIT, V43, P4278, DOI 10.1002/anie.200460804.
ALLEN TW, 2003, BIOPHYS J, V84, P2159.
ANDERSEN OS, 2005, IEEE T NANOBIOSCI, V4, P10, DOI 10.1109/TNB.2004.842470.
BAHR JL, 2002, J MATER CHEM, V12, P1952.
BORMANN J, 1987, J PHYSIOL-LONDON, V385, P243.
BROOKS BR, 1983, J COMPUT CHEM, V4, P187.
CHUNG SH, 2002, BIOPHYS J, V82, P628.
CORRY B, 2004, BIOPHYS J, V86, P846.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DRESSELHAUS MS, 1995, CARBON, V33, P883.
EDWARDS S, 2002, BIOPHYS J, V83, P1348.
FARHAT S, 2001, J CHEM PHYS, V115, P6752.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GARATE JA, 2009, MOL SIMULAT, V35, P2.
GORDON D, 2009, J CHEM PHYS, V131, ARTN 134102.
GROSSFIELD A, IMPLEMENTATION WHAM.
HILDER TA, 2009, SMALL, V5, P2183, DOI 10.1002/smll.200900349.
HILDER TA, 2009, SMALL, V5, P2870, DOI 10.1002/smll.200901229.
HILDER TA, 2010, MICRO NANO LETT, V5, P150, DOI 10.1049/mnl.2009.0112.
HOU SM, 2003, CHEM PHYS LETT, V373, P308, DOI 10.1016/S0009-2614(03)00588-8.
HOYLES M, 1998, PHYS REV E B, V58, P3654.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JARZYNSKI C, 1997, PHYS REV LETT, V78, P2690.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
KALE L, 1999, J COMPUT PHYS, V151, P283.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KASTENHOLZ MA, 2004, J PHYS CHEM B, V108, P774, DOI 10.1021/jp0350924.
KIM C, 2003, PHYS REV B, V68, ARTN 115403.
KRISHNAMURTHY V, 2006, J COMPUT THEOR NANOS, V3, P702.
KRUPKE R, 2005, ADV ENG MATER, V7, P111, DOI 10.1002/adem.200400170.
KUMAR S, 1995, J COMPUT CHEM, V16, P1339.
KUYUCAK S, 2001, REP PROG PHYS, V64, P1427.
LI ZM, 2004, APPL PHYS LETT, V85, P1253, DOI 10.1063/1.1781740.
LIN T, 2003, AUST J CHEM, V56, P635, DOI 10.1071/CH02254.
LOPEZ CF, 2004, P NATL ACAD SCI USA, V101, P4431, DOI 10.1073/pnas.0400352101.
LOPEZ CF, 2005, BIOPHYS J, V88, P3083, DOI 10.1529/biophysj.104.053769.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MILLER C, 1982, PHILOS T ROY SOC B, V299, P401.
NG JA, 2008, EUR BIOPHYS J BIOPHY, V37, P213, DOI 10.1007/s00249-007-0218-3.
NIELSEN SO, 2005, BIOPHYS J, V88, P3822, DOI 10.1529/biophysj.104.057703.
NIKOLAEV P, 1999, CHEM PHYS LETT, V313, P91.
OCONNELL MJ, 2006, CARBON NANOTUBES PRO.
OMARA M, 2005, BIOPHYS J, V88, P3286, DOI 10.1529/biophysj.104.051664.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
PETER C, 2005, BIOPHYS J, V89, P2222, DOI 10.1529/biophysj.105.065946.
QU L, 2006, CARBON NANOTECHNOLOG.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
SCHLEYER PV, 1998, ENCY COMPUTATIONAL C, V1.
SHI XH, 2008, ACTA MECH SINICA, V24, P161, DOI 10.1007/s10409-007-0131-0.
TASIS D, 2003, CHEM-EUR J, V9, P4000.
TROMP RM, 2008, NANO LETT, V8, P469, DOI 10.1021/nl072437b.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WON CY, 2009, CHEM PHYS LETT, V478, P185, DOI 10.1016/j.cplett.2009.07.064.
WONG SS, 1998, NATURE, V394, P52.
ZHI C, 2005, J AM CHEM SOC, V127, P17144, DOI 10.1021/ja055989+.
ZHI CY, 2005, J AM CHEM SOC, V127, P15996, DOI 10.1021/ja053917c.

Cited Reference Count:
58

Times Cited:
0

Publisher:
CELL PRESS; 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA

Subject Category:
Biophysics

ISSN:
0006-3495

DOI:
10.1016/j.bpj.2010.06.034

IDS Number:
654UY

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280432100016
*Order Full Text [ ]

Title:
Water Chains in Hydrophobic Crystal Channels: Nanoporous Materials as Supramolecular Analogues of Carbon Nanotubes

Authors:
Natarajan, R; Charmant, JPH; Orpen, AG; Davis, AP

Author Full Names:
Natarajan, Ramalingam; Charmant, Jonathan P. H.; Orpen, A. Guy; Davis, Anthony P.

Source:
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 49 (30): 5125-5129 2010

Language:
English

Document Type:
Article

Author Keywords:
crystal engineering; hydrogen bonding; hydrophobic effect; supramolecular chemistry; water chains

KeyWords Plus:
TRANSPORT; MEMBRANES

Reprint Address:
Davis, AP, Univ Bristol, Sch Chem, Cantocks Close, Bristol BS8 1TS, Avon, England.

Research Institution addresses:
[Natarajan, Ramalingam; Charmant, Jonathan P. H.; Orpen, A. Guy; Davis, Anthony P.] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England

E-mail Address:
anthony.davis@bristol.ac.uk

Cited References:
AGRE P, 2004, ANGEW CHEM, V116, P4377.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOLT JK, 2009, ADV MATER, V21, P3542, DOI 10.1002/adma.200900867.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOGA K, 2001, NATURE, V412, P802.
MASCAL M, 2006, ANGEW CHEM INT EDIT, V45, P32, DOI 10.1002/anie.200501839.
RAGHAVENDER US, 2009, J AM CHEM SOC, V131, P15130, DOI 10.1021/ja9038906.
RAGHAVENDER US, 2010, J AM CHEM SOC, V132, P1075, DOI 10.1021/ja9083978.
SANSOM MSP, 2001, NATURE, V414, P156.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SISSON AL, 2005, ANGEW CHEM INT EDIT, V44, P6878, DOI 10.1002/anie.200502330.
SISSON AL, 2005, ANGEW CHEM, V117, P7038.
SUZUKI S, 1992, SCIENCE, V257, P942.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
WANG L, 2009, J PHYS CHEM C, V113, P5368, DOI 10.1021/jp808873r.
WANG ZK, 2007, NANO LETT, V7, P697, DOI 10.1021/nl062853g.

Cited Reference Count:
19

Times Cited:
0

Publisher:
WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY

Subject Category:
Chemistry, Multidisciplinary

ISSN:
1433-7851

DOI:
10.1002/anie.201002418

IDS Number:
632NT

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: