Friday, October 29, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000282727600045
*Order Full Text [ ]

Title:
Molecular Origin of Fast Water Transport in Carbon Nanotube Membranes: Superlubricity versus Curvature Dependent Friction

Authors:
Falk, K; Sedlmeier, F; Joly, L; Netz, RR; Bocquet, L

Author Full Names:
Falk, Kerstin; Sedlmeier, Felix; Joly, Laurent; Netz, Roland R.; Bocquet, Lyderic

Source:
NANO LETTERS 10 (10): 4067-4073 OCT 2010

Language:
English

Document Type:
Article

Author Keywords:
Carbon nanotubes; graphene; confined water; water transport; permeability; membranes; nanofluidics

KeyWords Plus:
HYDRODYNAMIC BOUNDARY-CONDITIONS; FLUID-FLOW; SIMULATION; DYNAMICS; CHANNEL

Abstract:
In this paper, we study the interfacial friction of water at graphitic interfaces with various topologies, water between planar graphene sheets, inside and outside carbon nanotubes, with the goal to disentangle confinement and curvature effects on friction We show that the friction coefficient exhibits a strong curvature dependence, while friction is independent of confinement for the graphene slab, it decreases with carbon nanotube radius for water inside, but increases for water outside As a paradigm the friction coefficient is found to vanish below a threshold diameter for armchair nanotubes Using a statistical description of the interfacial friction, we highlight here a structural origin of this curvature dependence, mainly associated with a curvature-induced incommensurability between the water and carbon structures These results support the recent experiments reporting fast transport of water in nanometric carbon nanotube membranes

Reprint Address:
Bocquet, L, Univ Lyon 1, LPMCN, F-69622 Villeurbanne, France.

Research Institution addresses:
[Falk, Kerstin; Joly, Laurent; Bocquet, Lyderic] Univ Lyon 1, LPMCN, F-69622 Villeurbanne, France; [Falk, Kerstin; Joly, Laurent; Bocquet, Lyderic] CNRS, UMR 5586, F-69622 Villeurbanne, France; [Sedlmeier, Felix; Netz, Roland R.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany

Cited References:
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
BARRAT JL, 1999, FARADAY DISCUSS, V112, P119.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89.
BOCQUET L, 1994, PHYS REV E A, V49, P3079.
BOCQUET L, 2007, SOFT MATTER, V3, P685, DOI 10.1039/b616490k.
BOCQUET L, 2010, CHEM SOC REV, V39, P1073, DOI 10.1039/b909366b.
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179.
DIENWIEBEL M, 2004, PHYS REV LETT, V92, ARTN 126101.
ESPANOL P, 1993, J CHEM PHYS, V98, P574.
GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 144708.
HANSEN JP, 1969, PHYS REV, V184, P151.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUANG DM, 2008, PHYS REV LETT, V101, ARTN 226101.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
SPARREBOOM W, 2009, NAT NANOTECHNOL, V4, P713, DOI 10.1038/NNANO.2009.332.
SUI HX, 2001, NATURE, V414, P872.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
VANDERSPOEL D, 2005, J COMPUT CHEM, V26, P1701, DOI 10.1002/jcc.20291.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.

Cited Reference Count:
27

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1530-6984

DOI:
10.1021/nl1021046

IDS Number:
661KQ

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000282699800017
*Order Full Text [ ]

Title:
Quantum mechanics based force field for carbon (QMFF-Cx) validated to reproduce the mechanical and thermodynamics properties of graphite

Authors:
Pascal, TA; Karasawa, N; Goddard, WA

Author Full Names:
Pascal, Tod A.; Karasawa, Naoki; Goddard, William A., III

Source:
JOURNAL OF CHEMICAL PHYSICS 133 (13): Art. No. 134114 OCT 7 2010

Language:
English

Document Type:
Article

KeyWords Plus:
ANNEALED PYROLYTIC-GRAPHITE; SURFACE PHONON-DISPERSION; DENSITY-FUNCTIONAL THEORY; MOLECULAR-ORBITAL METHODS; GAUSSIAN-TYPE BASIS; MIDI BASIS-SET; AB-INITIO; ORGANIC-MOLECULES; THERMAL-EXPANSION; LATTICE-DYNAMICS

Abstract:
As assemblies of graphene sheets, carbon nanotubes, and fullerenes become components of new nanotechnologies, it is important to be able to predict the structures and properties of these systems. A problem has been that the level of quantum mechanics practical for such systems (density functional theory at the PBE level) cannot describe the London dispersion forces responsible for interaction of the graphene planes (thus graphite falls apart into graphene sheets). To provide a basis for describing these London interactions, we derive the quantum mechanics based force field for carbon (QMFF-Cx) by fitting to results from density functional theory calculations at the M06-2X level, which demonstrates accuracies for a broad class of molecules at short and medium range intermolecular distances. We carried out calculations on the dehydrogenated coronene (C24) dimer, emphasizing two geometries: parallel-displaced X (close to the observed structure in graphite crystal) and PD-Y (the
lowest energy transition state for sliding graphene sheets with respect to each other). A third, eclipsed geometry is calculated to be much higher in energy. The QMFF-Cx force field leads to accurate predictions of available experimental mechanical and thermodynamics data of graphite (lattice vibrations, elastic constants, Poisson ratios, lattice modes, phonon dispersion curves, specific heat, and thermal expansion). This validates the use of M06-2X as a practical method for development of new first principles based generations of QMFF force fields. (C) 2010 American Institute of Physics. [doi:10.1063/1.3456543]

Reprint Address:
Goddard, WA, CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA.

Research Institution addresses:
[Pascal, Tod A.; Goddard, William A., III] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA; [Pascal, Tod A.; Goddard, William A., III] Korea Adv Inst Sci & Technol, Grad Sch EEWS, Taejon 305701, South Korea; [Karasawa, Naoki] Chitose Inst Sci & Technol, Dept Photon Sci, Sapporo, Hokkaido 0668655, Japan

E-mail Address:
wag@wag.caltech.edu

Cited References:
2007, JAGUAR VERSION 7 0.
ALJISHI R, 1982, PHYS REV B, V26, P4514.
ALLAN NL, 1996, J CHEM PHYS, V105, P8300.
ALLINGER NL, 1977, J AM CHEM SOC, V99, P8127.
ALLINGER NL, 1987, J COMPUT CHEM, V8, P1146.
AYASSE JB, 1979, SOLID STATE COMMUN, V29, P659.
BAILEY AC, 1970, J APPL PHYS, V41, P5088.
BAKER C, 1964, PHILOS MAG, V9, P927.
BARONE V, 2006, NANO LETT, V6, P2748, DOI 10.1021/nl0617033.
BENEDICT LX, 1998, CHEM PHYS LETT, V286, P490.
BILLMEYER FW, 1957, J APPL PHYS, V28, P1114.
BLAKSLEE OL, 1970, J APPL PHYS, V41, P3373.
BOWMAN JC, 1958, J PHYS CHEM SOLIDS, V6, P367.
BOYS SF, 1970, MOL PHYS, V19, P553, DOI 10.1080/00268977000101561.
BROOKS BR, 1983, J COMPUT CHEM, V4, P187.
CASE DA, 1999, AMBER7.
CHEN RJ, 2003, P NATL ACAD SCI USA, V100, P4984, DOI 10.1073/pnas.0837064100.
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179.
DAHL T, 1994, ACTA CHEM SCAND, V48, P95.
DASGUPTA S, 1989, J CHEM PHYS, V90, P7207.
DAVIDSON ER, 1986, CHEM REV, V86, P681.
DESORBO W, 1953, J CHEM PHYS, V21, P1660.
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724.
DOLLING G, 1962, PHYS REV, V128, P1120.
DONOHUE J, 1974, STRUCTURES ELEMENTS.
DUNNING TH, 1989, J CHEM PHYS, V90, P1007.
EASTON RE, 1996, THEOR CHIM ACTA, V93, P281.
FASOLINO A, 2007, NAT MATER, V6, P858.
FELLER D, 2000, J PHYS CHEM A, V104, P9971, DOI 10.1021/jp0017660.
FRIEDEL J, 1958, NUOVO CIM SUPPL, V7, P287, DOI 10.1007/BF02751483.
GALE JD, 1997, J CHEM SOC FARADAY T, V93, P629.
GALE JD, 2003, MOL SIMULAT, V29, P291, DOI 10.1080/0892702031000104887.
GAUSTER WB, 1974, J APPL PHYS, V45, P3309.
GIRIFALCO LA, 2000, PHYS REV B, V62, P13104.
GRIMME S, 2004, J COMPUT CHEM, V25, P1463, DOI 10.1002/jcc.20078.
GRIMME S, 2007, J PHYS CHEM C, V111, P11199, DOI 10.1021/jp0720791.
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257.
HEHRE WJR, 1986, AB INITIO MOL ORBITA.
HULTGREN RR, 1973, SELECTED VALUES THER.
HUMMER G, 2001, NATURE, V414, P188.
JORGENSEN WL, 1990, J AM CHEM SOC, V112, P4768.
KARASAWA N, 1989, J PHYS CHEM-US, V93, P7320.
KARASAWA N, 1991, J PHYS CHEM-US, V95, P2260.
KELLETT EA, 1964, J NUCL MATER, V12, P184.
KELLY CP, 2005, THEOR CHEM ACC, V113, P133, DOI 10.1007/s00214-004-0624-x.
KENDALL RA, 1992, J CHEM PHYS, V96, P6796.
KOMATSU K, 1955, J PHYS SOC JPN, V10, P346.
KOMATSU K, 1958, J PHYS CHEM SOLIDS, V6, P380.
KOMATSU K, 1964, J PHYS CHEM SOLIDS, V25, P707.
LEE NK, 2005, J CHEM PHYS, V122, ARTN 031102.
MACKERELL AD, 1995, J AM CHEM SOC, V117, P11946.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MAULTZSCH J, 2004, PHYS REV LETT, V92, ARTN 075501.
MAYO SL, 1990, J PHYS CHEM-US, V94, P8897.
MEYER EA, 2003, ANGEW CHEM INT EDIT, V42, P1210.
MOHR M, 2007, PHYS REV B, V76, ARTN 035439.
MOLLER C, 1934, PHYS REV, V46, P618.
MORGAN WC, 1972, CARBON, V10, P73.
MOUNET N, 2005, PHYS REV B, V71, ARTN 205214.
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833.
NARASIMHAN S, 2002, PHYS REV B, V65, ARTN 064302.
NELSON JB, 1945, P PHYS SOC LOND, V57, P477.
NEMANICH RJ, 1977, SOLID STATE COMMUN, V23, P117.
NICKLOW R, 1972, PHYS REV B, V5, P4951.
NIHIRA T, 2003, PHYS REV B, V68, ARTN 134305.
OSHIMA C, 1988, SOLID STATE COMMUN, V65, P1601.
PAVONE P, 1993, PHYS REV B, V48, P3156.
PEREZ A, 2007, BIOPHYS J, V92, P3817, DOI 10.1529/biophysj.106.097782.
PIERSON HO, 1993, HDB CARBON GRAPHITE.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
PROPHET H, 1971, JANAF THERMOCHEMICAL.
QUO Y, 1991, NATURE, V351, P464.
QUONG AA, 1997, PHYS REV B, V56, P7767.
RILEY DP, 1945, P PHYS SOC LOND, V57, P486.
RUUSKA H, 2001, J PHYS CHEM B, V105, P9541.
SCHWENKE DW, 1985, J CHEM PHYS, V82, P2418.
SHERRILL CD, 2009, J COMPUT CHEM, V30, P2187, DOI 10.1002/jcc.21226.
SHERRILL CD, 2009, J PHYS CHEM A, V113, P10146, DOI 10.1021/jp9034375.
SIEBENTRITT S, 1997, PHYS REV B, V55, P7927.
SON YW, 2006, NATURE, V444, P347, DOI 10.1038/nature05180.
SPANU L, 2009, PHYS REV LETT, V103, ARTN 196401.
STANKOVICH S, 2006, NATURE, V442, P282, DOI 10.1038/nature04969.
TSUZUKI S, 2004, J CHEM PHYS, V120, P647, DOI 10.1063/1.1630953.
TUINSTRA F, 1970, J CHEM PHYS, V53, P1126.
ULBRICHT H, 2003, PHYS REV LETT, V90, ARTN 095501.
VENEMA L, 2007, NATURE, V446, P36, DOI 10.1038/446036a.
WANG JM, 2004, J COMPUT CHEM, V25, P1157.
WILLIAMS DE, 1984, ACTA CRYSTALLOGR B, V40, P404.
WU JS, 2007, CHEM REV, V107, P718, DOI 10.1021/cr068010r.
YANAGISAWA H, 2005, SURF INTERFACE ANAL, V37, P133, DOI 10.1002/sia.1948.
ZACHARIA R, 2004, PHYS REV B, V69, ARTN 155406.
ZHANG Y, 2009, P NATL ACAD SCI USA, V106, P4963, DOI 10.1073/pnas.0901093106.
ZHAO Y, 2005, J CHEM THEORY COMPUT, V1, P415, DOI 10.1021/ct049851d.
ZHAO Y, 2006, J CHEM PHYS, V125, ARTN 194101.
ZHAO Y, 2006, SMALL, V2, P364, DOI 10.1002/smll.200500430.
ZHAO Y, 2007, J CHEM THEORY COMPUT, V3, P289, DOI 10.1021/ct6002719.
ZHAO Y, 2008, J PHYS CHEM C, V112, P4061, DOI 10.1021/jp710918f.
ZHAO Y, 2008, THEOR CHEM ACC, V120, P215, DOI 10.1007/s00214-007-0310-x.

Cited Reference Count:
98

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3456543

IDS Number:
661CE

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: