Friday, October 15, 2010

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000282157100012
*Order Full Text [ ]

Title:
Anomalous flow behavior in closed and open thin walled nanochannels

Authors:
Murad, S; Puri, IK

Author Full Names:
Murad, Sohail; Puri, Ishwar K.

Source:
PHYSICS LETTERS A 374 (41): 4242-4246 SEP 13 2010

Language:
English

Document Type:
Article

KeyWords Plus:
WATER; MEMBRANES; SIMULATION; TRANSPORT

Abstract:
Molecular dynamics simulations have been carried out to examine water flow in symmetric and asymmetric open and closed ends nanochannels with hydrophilic surfaces. The results are counterintuitive and the opposite of what is observed in macro-systems-closed channels fill faster with fluid than do their open counterparts. In addition, hybrid closed-open asymmetric channels fill up even faster. These results can be explained on the basis of the fluid-structure interaction that arises through the different vibrational behaviors of the surface molecules that are part of the wall forming these channels. Such effects are not expected to be of significance in macro-channels, and point to an important case where macro and nanochannels exhibit contrary behavior. Since these effects results from strong interactions between the fluid molecules and solid surface, one would not expect them with hydrophobic walls, and our simulations confirm such behavior. (C) 2010 Elsevier B.V. All rights
reserved.

Reprint Address:
Murad, S, Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA.

Research Institution addresses:
[Murad, Sohail] Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA; [Puri, Ishwar K.] Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA

E-mail Address:
murad@uic.edu

Cited References:
AGRE P, 2004, ANGEW CHEM INT EDIT, V43, P4278, DOI 10.1002/anie.200460804.
ALLEN MP, 1987, COMPUTER SIMULATION.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BECKSTEIN O, 2004, PHYS BIOL, V1, P42, DOI 10.1088/1478-3967/1/1/005.
BERENDSON HJC, 1981, INTERMOLECULAR FORCE.
CHANDRASEKHAR J, 1984, J AM CHEM SOC, V106, P3049.
EVANS DJ, 1977, MOL PHYS, V34, P327.
FUERSTMAN MJ, 2003, LANGMUIR, V19, P4714, DOI 10.1021/la030054x.
GONG B, 2002, P NATL ACAD SCI USA, V99, P11583, DOI 10.1073/pnas.162277099.
GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KITANO H, 2002, SCIENCE, V295, P1662.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, P4.
LOPEZ CF, 2004, P NATL ACAD SCI USA, V101, P4431, DOI 10.1073/pnas.0400352101.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MURAD S, 1999, CHEM ENG J, V74, P99.
MURAD S, 2002, IND ENG CHEM RES, V41, P1076.
MURAD S, 2007, PHYS FLUIDS, V19, ARTN 128102.
MURAD S, 2008, APPL PHYS LETT, V92, ARTN 133105.
MURAD S, 2008, CHEM PHYS LETT, V467, P110, DOI 10.1016/j.cplett.2008.10.068.
MURAD S, 2010, CHEM PHYS LETT, V492, P285, DOI 10.1016/j.cplett.2010.04.070.
RABE U, 1996, REV SCI INSTRUM, V67, P3281.
STROOCK AD, 2002, SCIENCE, V295, P647.
TIRONI IG, 1995, J CHEM PHYS, V102, P5451.
WANG YF, 2003, GEOLOGY, V31, P387.
WATTS RO, 1974, MOL PHYS, V28, P1069.

Cited Reference Count:
26

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Physics, Multidisciplinary

ISSN:
0375-9601

DOI:
10.1016/j.physleta.2010.08.043

IDS Number:
654GS

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000282197500009
*Order Full Text [ ]

Title:
Synthetic Chloride-Selective Carbon Nanotubes Examined by Using Molecular and Stochastic Dynamics

Authors:
Hilder, TA; Gordon, D; Chung, SH

Author Full Names:
Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho

Source:
BIOPHYSICAL JOURNAL 99 (6): 1734-1742 SEP 22 2010

Language:
English

Document Type:
Article

KeyWords Plus:
BORON-NITRIDE NANOTUBES; BROWNIAN DYNAMICS; WATER TRANSPORT; FORCE-FIELDS; CHANNELS; SIMULATIONS; PERMEATION; CHEMISTRY; MEMBRANE; SEPARATION

Abstract:
Synthetic channels, such as nanotubes, offer the possibility of ion-selective nanoscale pores which can broadly mimic the functions of various biological ion channels, and may one day be used as antimicrobial agents, or for treatment of cystic fibrosis. We have designed a carbon nanotube that is selectively permeable to anions. The virtual nanotubes are constructed from a hexagonal array of carbon atoms (graphene) rolled up to form a tubular structure, with an effective radius of 4.53 angstrom and length of 34 angstrom. The pore ends are terminated with polar carbonyl groups. The nanotube thus formed is embedded in a lipid bilayer and a reservoir containing ionic solutions is added at each end of the pore. The conductance properties of these synthetic channels are then examined with molecular and stochastic dynamics simulations. Profiles of the potential of mean force at 0 mM reveal that a cation moving across the pore encounters an insurmountable free energy barrier of simil
ar to 25 kT in height. In contrast, for anions, there are two energy wells of similar to 12 kT near each end of the tube, separated by a central free energy barrier of 4 kT. The conductance of the pore, with symmetrical 500 mM solutions in the reservoirs, is 72 pS at 100 mV. The current saturates with an increasing ionic concentration, obeying a Michaelis-Menten relationship. The pore is normally occupied by two ions, and the rate-limiting step in conduction is the time taken for the resident ion near the exit gate to move out of the energy well.

Reprint Address:
Hilder, TA, Australian Natl Univ, Res Sch Biol, Canberra, ACT, Australia.

Research Institution addresses:
[Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho] Australian Natl Univ, Res Sch Biol, Canberra, ACT, Australia

E-mail Address:
tamsyn.hilder@anu.edu.au

Cited References:
AGRE P, 2004, ANGEW CHEM INT EDIT, V43, P4278, DOI 10.1002/anie.200460804.
ALLEN TW, 2003, BIOPHYS J, V84, P2159.
ANDERSEN OS, 2005, IEEE T NANOBIOSCI, V4, P10, DOI 10.1109/TNB.2004.842470.
BAHR JL, 2002, J MATER CHEM, V12, P1952.
BORMANN J, 1987, J PHYSIOL-LONDON, V385, P243.
BROOKS BR, 1983, J COMPUT CHEM, V4, P187.
CHUNG SH, 2002, BIOPHYS J, V82, P628.
CORRY B, 2004, BIOPHYS J, V86, P846.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DRESSELHAUS MS, 1995, CARBON, V33, P883.
EDWARDS S, 2002, BIOPHYS J, V83, P1348.
FARHAT S, 2001, J CHEM PHYS, V115, P6752.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GARATE JA, 2009, MOL SIMULAT, V35, P2.
GORDON D, 2009, J CHEM PHYS, V131, ARTN 134102.
GROSSFIELD A, IMPLEMENTATION WHAM.
HILDER TA, 2009, SMALL, V5, P2183, DOI 10.1002/smll.200900349.
HILDER TA, 2009, SMALL, V5, P2870, DOI 10.1002/smll.200901229.
HILDER TA, 2010, MICRO NANO LETT, V5, P150, DOI 10.1049/mnl.2009.0112.
HOU SM, 2003, CHEM PHYS LETT, V373, P308, DOI 10.1016/S0009-2614(03)00588-8.
HOYLES M, 1998, PHYS REV E B, V58, P3654.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JARZYNSKI C, 1997, PHYS REV LETT, V78, P2690.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
KALE L, 1999, J COMPUT PHYS, V151, P283.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KASTENHOLZ MA, 2004, J PHYS CHEM B, V108, P774, DOI 10.1021/jp0350924.
KIM C, 2003, PHYS REV B, V68, ARTN 115403.
KRISHNAMURTHY V, 2006, J COMPUT THEOR NANOS, V3, P702.
KRUPKE R, 2005, ADV ENG MATER, V7, P111, DOI 10.1002/adem.200400170.
KUMAR S, 1995, J COMPUT CHEM, V16, P1339.
KUYUCAK S, 2001, REP PROG PHYS, V64, P1427.
LI ZM, 2004, APPL PHYS LETT, V85, P1253, DOI 10.1063/1.1781740.
LIN T, 2003, AUST J CHEM, V56, P635, DOI 10.1071/CH02254.
LOPEZ CF, 2004, P NATL ACAD SCI USA, V101, P4431, DOI 10.1073/pnas.0400352101.
LOPEZ CF, 2005, BIOPHYS J, V88, P3083, DOI 10.1529/biophysj.104.053769.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MILLER C, 1982, PHILOS T ROY SOC B, V299, P401.
NG JA, 2008, EUR BIOPHYS J BIOPHY, V37, P213, DOI 10.1007/s00249-007-0218-3.
NIELSEN SO, 2005, BIOPHYS J, V88, P3822, DOI 10.1529/biophysj.104.057703.
NIKOLAEV P, 1999, CHEM PHYS LETT, V313, P91.
OCONNELL MJ, 2006, CARBON NANOTUBES PRO.
OMARA M, 2005, BIOPHYS J, V88, P3286, DOI 10.1529/biophysj.104.051664.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
PETER C, 2005, BIOPHYS J, V89, P2222, DOI 10.1529/biophysj.105.065946.
QU L, 2006, CARBON NANOTECHNOLOG.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
SCHLEYER PV, 1998, ENCY COMPUTATIONAL C, V1.
SHI XH, 2008, ACTA MECH SINICA, V24, P161, DOI 10.1007/s10409-007-0131-0.
TASIS D, 2003, CHEM-EUR J, V9, P4000.
TROMP RM, 2008, NANO LETT, V8, P469, DOI 10.1021/nl072437b.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WON CY, 2009, CHEM PHYS LETT, V478, P185, DOI 10.1016/j.cplett.2009.07.064.
WONG SS, 1998, NATURE, V394, P52.
ZHI C, 2005, J AM CHEM SOC, V127, P17144, DOI 10.1021/ja055989+.
ZHI CY, 2005, J AM CHEM SOC, V127, P15996, DOI 10.1021/ja053917c.

Cited Reference Count:
58

Times Cited:
0

Publisher:
CELL PRESS; 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA

Subject Category:
Biophysics

ISSN:
0006-3495

DOI:
10.1016/j.bpj.2010.06.034

IDS Number:
654UY

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: